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Abstract

Theoretical research has been carried out to study the effect of free-stream

turbulence on sonic boom pressure fields. A new transonic small-disturbance

model to analyze the interactions of random disturbances with a weak shock

has been developed. The model equation has an extended form of the clas-

sic small-disturbance equation for unsteady transonic aerodynamics. An

alternative approach shows that the pressure field may" be described by an

equation that has an extended form of the classic nonlinear acoustics equa-

tion that describes the propagation of sound beams with narrow angular

spectrum. The model shows that diffraction effects, nonlinear steepening

effects, focusing and caustic effects and random induced vorticity fluctu-

ations interact simultaneously to determine the development of the shock

wave in space and time and the pressure field behind it. A finite-difference

algorithm to solve the mixed-type elliptic-hyperbolic flows around the shock

wave has also been developed. Numerical calculations of shock wave interac-

tions with various deterministic and random fluctuations will be presented

in a future report.
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1 Introduction

Experimental data exists showing the pressure profiles of sonic booms, cre-

ated by the passage of a distant supersonic aircraft, can be drastically

affected by free-stream atmospheric turbulence. 1-s The usual N-wave or

a shaped sonic boom profile can randomly exhibit either large pressure

peaks with short rise times or rounded profiles with longer rise times or

messy pressure signatures. Recent laboratory model experiments to study

the effect of turbulence on the rise time and wave form of N-waves have

shown similar results, s The interaction of the sonic boom with the atmo-

spheric turbulence, specifically in the atmospheric boundary layer relatively

near the ground, may result sometimes in higher, and may be unacceptable

loudness levels, r Therefore, in order to get reasonable estimates of the sonic

boom performance of various designs of a future supersonic transport air-

plane it is essential to understand the basic interactions of the atmospheric

turbulence with shock waves.

The basic analysis of the distortion of sonic bangs by atmospheric tur-

bulence was given by Crow. s Using a first-order acoustic scattering theory,

Crow showed that the pressure perturbation behind the shock is related to

the interaction of the shock with the disturbances it encounters while mov-

ing in the atmosphere. The pressure profile can be calculated by a surface

integral over a paraboloid of dependence, whose focus is the observation

point and whose directix is the shock front. By describing the turbulent

eddies in the Kolmogorov inertial subrange, it was found that the mean-

square pressure perturbation behind the shock changes like (Ap)2(tc/t) _/6

where (Ap) is the pressure jump across the shock, (t) is time after the shock

passes an observation point and (to) is a critical time predicted in terms

of meteorological conditions. Crow's analysis predicts reasonable average

values of the pressure fluctuations for times (t) comparable to (to).

The singularityin the pressure perturbations near the shock front (when

t ---,0) was analyzed by Plotkin and George 9. A second-order acoustic

scattering theory was used to describe shock rounded signatures. The av-

erage of the diffractioneffectswas approximated as a dissipation term.
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The thickening of the shock is explained as a balance between nonlinear

steepening effects and the dissipative effect of the turbulent scattering of

acoustic energy out of the incident shock. Rise time predictions of this

theory show some correlation with experimental data. On the other hand,

Ffowcs Williams and Howe 1° examined the approaches that describe the

possibility of a turbulent thickening of weak shock waves and reached a

conclusion that atmospheric turbulence cannot be the cause of shock thick-

ening. They suggested that weak shocks may attain a dispersed profile due

to non-equiLibrium gas effects.

It should be emphasized here that the scattering analyses of References

8-10 considered small turbulent perturbations against the shock strength,

whereas in the case of the interaction of the sonic boom with atmospheric

turbulence the flow random fluctuations may be of the same order of the

shock weak strength and may strongly distort the shock front. The above

analyses also did not account for shock jump conditions that must be sat-

isfied in an inviscid analysis across any shock surface. The approximation

made in Reference 9 of the average diffraction effects described as a dissi-

pative term=is also unclear: ::_!÷:_:_:::

A different approach was taken by Pierce 11'12. He interpreted the spikes

observed on sonic boom pressure waveforms as being due to the simultane-

ous focusing and diffraction of a nearly planar N-wave by an inhomogeneous

layer in the atmosphere. The shock front develops ripples that axe trans-

formed into folds in the front when the shock passes vertices of caustics.

This mechanism results in a fine structure of very small pressure jumps

that correspond to the various segments of the folded wavefront. Pierce 12

derived a stochastic model of a sharp shock propagating through a turbu-

lent atmosphere to substantiate the very small discrete structure of sonic

boom profiles.

Pierce modeP 1'12, howeverl negiects nonlinear effects that become sig-

nificant specifically near a caustic vertex as was shown by Cramer and

: I3Seebass 13 and Gill and SeebassI_: cramer and Seebass described the fo-

cuslngo(a_very weak and slightly=concave shock Wave by the unsteady

transonic small-disturbance flow equation. Gill and Seebass 14 derived an
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approximate analytical solution of the steady transonic small-disturbance
problem for the nonlinear behaviorof a weak compressionwavewith a finite
rise time near a caustic. They calculated the reflected shockwave from a
caustic and provided an estimateof its strength. The experimental results
of Sturtevant and Kulkarny Isalsoshowthat focusingeffectsarespecifically
significant for weak shockwavesas occurs in the caseof the sonic boom
signatures.

Sparrowand PierceIshaverecently presenteda simplestatistical predic-
tion for how often sonic booms propagating in the earth's boundary layer
will encounter caustics. The theory is basedon describing the variation
of ray tube areasof a soundwave propagating in a turbulent medium by
a generic harmonic oscillator equation. For realistic realizations of atmo-
spheric turbulence the model predicts that sonic booms will exhibit spikes
with the occurrenceof causticsafter a very short distance of travel in the
random medium, thus agreeingwith the predictions of Pierce11.12

In a recent paper, Pierce_r has derived a model equation to describe
the developmentof sonic boom signatures in an atmospheric turbulence.
The equation hasbeenconstructedby suing logical physical considerations
only. It extends geometrical acoustic approximations to include convec-
tion at the wave speed, diffraction effects, molecular relaxation, classical
dissipation and nonlinear steepeningeffects. The atmospheric turbulence
enters through an effectivespeedof sound which varies randomly in time
and space. However,sincethis theory hasnot beendevelopedconsistently
from the fluid dynamic equations,Piercelr raisedquestionswhether all the
effects are necessaryin his suggestedmodel and how to accomplish a nu-
merical or analytical solution to the problem.

Related with the problem of the sonic boom interaction with turbulence

is the basic question of the interaction of a shock wave with a vortical flow

and specifically with a vortex or a train of eddies ts-21. The research of

the later problem was basically motivated by the interest to reduce the

noise and vibrations produced by high-speed supersonic vehicles. For these

problems, the interaction of relatively strong shock waves with turbulent

jets or wakes is a significant source of noise. The shock-vortex system is a
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basicelementof thesemorecomplex interactions _1. It can also shed light on

the sonic boom interaction with atmospheric turbulence, specifically when

the shocks are weak and vortex strength is comparable with the shock
strength.

Experimental results of shock-vortex systems _s-_ revealed curved, dif-

fracted shocks as well as complicate structures of reflected curved shock

waves from the incident shock front due to the vortex induced flow fieldl

The pressure field behind the shock contains regions of compressions and

rarefactions that produce acoustic waves. Similar shock structures were

also observed by Sturtevant and !,:ulkarny _5 who investigated the focusing

of weak curved shock waves. Of specific interest are Dosanjk and Weeks 19

measurements of the interaction of a shock wave with a vortex street. The

shock front is distorted by the wake flow which probably results in a focusing

process, while the vortex street is rapidly dissolved by the shock.

The analyses of the shock-vortex interaction are limited to linear per-

turbation theories only. _2-_s These analyses considered the jump conditions

across a shock surface and predicted the development of vorticity waves,

entropy waves and acoustic waves behind the shock front. 22-24 The acous-

tic wave was approximated by a quadrupolar 2e or as a sum of monopole,

dipole and quadrupole acoustic sources. However, since all of these theo-

ries are linear, they cannot account for any nonlinear effects due to shock

large distortions, focusing and caustic effects or nonlinear steepening ef-

fects that are found in experiments _s-_° or in recent numerical simulations
of shock-vortex interactions. 2r-2_

The review of experimental and theoretical investigations of the interac-

tion of shock waves with free stream vortical or turbulent flows shows that

this complex nonlinear interaction is still an open problem. 2:' Specifically,

the improved simulation of sonic boom propagation through the real at-

mosphere requires a better understanding of the interaction of sonic boom

with atmospheric turbulence, is

The analysis of the experimental data and the theoretical approaches

shows that in the case of the sonic boom, the shock waves near ground
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are very weak, but still stronger than any acoustic wave. Also, flow fluc-

tuations due the atmospheric turbulence can become comparable to the

shock weak strength such that locally the shock strength can be strongly

reduced or magnified and the shock wave front can be distorted significantly.

Therefore, linearized acoustics and its second-order scattering problem, or

first-order linear theories of shock-vorticity interaction do not represent cor-

rectly the development of the weak shock and the pressure field behind it

(see also Section 2). However, in a coordinate system moving with the basic

weak shock, the problem may fit the transonic framework.

This paper presents a new transonic small-disturbance model that has

been developed to describe the interactions of random fluctuations with a

weak shock wave. The model equation is found to have an extended form

of the classic nonlinear acoustics equation that describes the propagation

of sound beams with narrow angular spectrum (KKZ equation), a°'al The

model shows that diffraction effects, nonlinear steepening effects, focus-

ing and caustic effects and random induced vorticity fluctuations interact

simultaneously to determine the development of the shock wave in space

and time and the pressure field behind it. A finite-difference algorithm to

solve the mixed-type elliptic-hyperbolic flows around the shock wave is also

presented. The results of the numerical calculations will be presented in a

future report. It is expected to find solutions that will describe both peaked

or rounded or messy pressure signatures as were recorded in experiments.

2 The Breakdown of the Linearized Theory

2.1 The Linearized Theory

An inviseid and a non heat conducting flow is assumed. A normal shock

with a uniform supersonic oncoming stream and a uniform subsonic outgo-

ing flow. is considered. The upstream flow ahead of he shock is characterized

by a speed (U0,) in the z- direction, pressure (p0_) and density (P0_) and

the downstream flow behind the shock by (U0b), (Pob) and (Pob) respectively.
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Assuming the shock front is given by the z = 0 plane, the jump conditions
across a normal shock 32 show that:

po_Uoo = pobUob

I 3 "Y , I 3 3' U
_#oorJo:+ - i-poo['oo= 5#oJ-r_b+ - Tpob ob- "I - 7

Small disturbances are considered in each of the uniform streams. The

veloclty Vector (V). pressure'i P), density (p} and vorticity (_) are given

ahead (j = a) and behind the shock (j = b) by:

l/ = C'0j(e +ev +--.)
" j _'r "lJ

= Poj(i + ep,._+L..)

-- Poj(l +epij +'")

(2)

Here v ,Ply, plj are functions of (z, y, z, t). An axial coordinate moving

with the uniform speed is considered in each region, (X = z - Uojt, r =

Uoit. The substitution into the continuity, momentum and energy equations
a _e !e

results to the leading order in (V = ae--'_e + + ):" _:)_"V ')= "'_

Op_j

o--;-+F.v = o"tj

Ov I

._Z!z + .,,-27"27"_P1: = 0
Or 71Vl_j

(3)
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Equations (3) result in:

Opl :
Or + "_(_7 " e )~ "_'13

= 0

Ow
c32p1_

Opl: Op,j _ = O. ,_/I2o2 _2p,: = 0 (4)
Or - "y Or ' Or Or s

where Moj - Uoj/Co: and C2o2= 7Poj/po2. Equations (4) show that w =
"12

(_, y, z) and that the pressure perturbation Pl: is described by the acous-'"13

tics equation. Therefore, the first order disturbance flow can be split into

a linear combination of rotational and irrotational parts: t, -- v + v
~U "Uw ~x_o

The rotational part can be described essentially by incompressible flow
equations:

V" v = 0, V x v = _" (_2, Y, z) (Sa)
~ ~12w .-, "ljw ""12

The irrotational (potential) part may be described by acoustics equations

relative to the basic flow in each region:

v = _7¢j, P_J = _?.k/.022 0% O_¢j
~1:0 .. c9-'_" -'vl0_jOr 2 _7_¢: = 0 (5b)

The first-order perturbation theory also considers the distortion of the

shock front. Assuming that the perturbed shock front is given by x -

egl(y, z, t) = O, the exact jump condition across the shock 32 result to the

leading order in a set of conditions that must be satisfied along the x = 0
plane for any (y, z, t):

p_(O, y, z, t) + u_(O, y, z, t) -
glt

U0a = Plb(0. y," t)+ulb(O,y,z,t)- gl----LU0b

1 )y, z, t) + 2u,_(O, y, z, t)) + _p_(O, y, _,
° - t) =

( , )= Uob Plb(O, y, Z, t) -t- 2ttlb(O, y, Z, t) Jr" _Plb(O, y, Z, t)
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z,t) + 3u_,(O, y,:.t) +
0

('/_ 1).,l_(p_(O,y, z,t)+

( ))g'_i I + _- TTMo2 '+ _L_(O'_'z't)) - Uo_ (':

:,t) + 3u,_(O. y, =.t) +
0

(:, _ _-)Mo__(p,_(o,u,-',t)+

2. ))+ ut+(O, y.-.t)) - [%b (+, - l)-'X4o2b

U0,(t'l_(0, y, z, t) + gl_) = 5ob(vlb(0, y, z, t) + gl_)

Uo,( w!,( O, y, z, t) + g,,. ) = Lob( u,,b( O, y, z, t) + gl, ) (6)

Here g_t = Ogl/Ot and (ul_, ulj, wlj) are the components of the velocity

perturbation v . The linearized jump conditions in Eqs. (6) include the
"lj

entropy increase produced by the shock. It can be shown from Eqs. (5) and

(6) that, using the solution of the downstream equations for the disturbance

flow, the shock conditions are adequate to describe the flow downstream and

the disturbed motion of the shock wave for given upstream disturbances.

2.2 One Dimensional Flow

In the case of a one-dimensional flow, the rotational part vanishes identically

and the solution of the acoustics equation ahead (j = a) and behind (j - b)
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the shock is given by:

ul./ = F .7 .%loj +G j+

r + r

where F and G are arbitrary functions that describe the upstream and

downstream acoustic waves. Here p. is an arbitrary function that describes

entropy waves that are convected with the flows (the entropy first-order

disturbance is given by Sj - S0_ = esl_ = -ecpMojp_(_), where Sj is

the entropy in region j, Soj = c_ln(Poj/pgj) and c,,cp are the specific

heat constants). Assuming that no upstream acoustic waves can develop,

specifically not in the flow behind the shock then G -- 0. Then the shock

jump conditions (6) provide a system of 3 linear equations for the solution

of the downstream acoustic and entropy waves Fb((b - ,_0_) and P,b(_b) and

the shock position rate of change in time gl,(t) in terms of the given acoustic

and entropy perturbations F_((_ .tf0o ) and p,_(_) in the upstream flow.
Let,

F.o = F_(-(Uoo + Coo)t),

Fbo = Fb(-(Uob + cob)t).

p,.o = p,o(-Uo.t)

p,bo = P,b(--[robt )

(8)

then from Eqs. (6) - (8) we get:
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{Uob I g_'(i + .VIob)Fbo+ ;V/obp,bo+ \Uo= - I _ = (I + ._Io=)F_o+ _V/o=P,=o

2 + _}_fob+ _ Fbo + ._IobP,bo = (-"o._., 2 + M'o= + F,_o + _'V/o=P,=o

( 2 )3 + :Vfob+ (.y_ z)._z&(1+ "rMob) Fbo+ :'VfobP,bo+

-\(U°=( 2/-, ) 2/_.-: '_g_,+ \ Uob 1+ (": _ 1)M& 1 (-_- 1)M& ) Uob

(( o ) )U°_° 3 + Mo= + - + "FMo,, ) F=o + Mo.p,..o (9)
= _ob ( ")' - 1)M2o,,( 1

The determinant of the system (9) may be written in the form /k =

(M'0Z, - 1)fn(M(_,). Therefore, the solution of Eqs. (9) shows that the

shock front motion and the perturbed flow behind it may be described by:

z = .,vlo2_ l_(t; :_Io_)

_ fit(z,t:Mo=)+'")

PI_ = P0b 1 + ._Io__ 1,51(:r, t; :V/o=) +." (10)

( , )Pit, = Pob 1 + ._I_,, - 1 [h(x't:M°=) + "'"

The functions gl, t_l, i51,/31 can be expressed in terms of the given flow per-

turbations ahead of the shock wave. In principle, these expressions may
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enablea spectral characterizationof the pressurefluctuations and the tur-
bulencedownstreamof the shockwave in terms of the spectral character-
ization of the incoming turbulence. However. Eqs. (10) show that the
linear approach is a non-uniform approach when the shock wave is very
weak M02,, --, 1 + and the flow fluctuations are of the same order of the

shock strength, e -._ (M02_ - 1 ), as is the case of the interaction of the sonic

boom with atmospheric turbulence. A similar nonuniformity is also ex-

pected from the analysis of two- or three-dimensional flows. However, this

uniformity problem leads to a different approach to study the interaction

of a weak shock with comparable random fluctuations in the flow.

3 A Transonic Small Disturbance Model

The analysis of the linearized problem of the interaction of a weak shock

with small disturbances shows that it is an invalid approach when the flow

perturbations are of the order of the shock strength. Therefore, a different

approach has been developed to study the interaction of weak shocks with

comparable random fluctuations in the flow. In a coordinate system moving

with a basic given weak shock, the problem may fit the transonic theory

framework. A transonic small-disturbance model is developed to analyze

the flow across a basic weak shock running in the (-.r) direction. A coordi-

nate system attached to the basic shock is considered. The velocity vector

(V), pressure (P), density (p} and vorticity (_) are described every where

in the flow by:

y = Uo¢{/(1+ + + +...)

+j(ev, + e_/av: + ...) + k(ew, + _/3w2 + ...)}

P = p_¢(l + _2/3p + ePl 4- _4/3p2 q- "" ") (Ii)

p = p..¢(1 + e2/3p + epl + e_/3p_ + "")
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-.. = _2"3(jw_,... + kw..)+_(i,.,;_l~.. +J_.'_ +k',,,'..t).. +'"

h" 2/3
where U_o = a_o(1 + T _ ) is the speed of the basic shock (K > 0) and

aoo, Po¢, P_¢ are the speed of sound, pressure and density of the unperturbed

flow ahead of the shock. (e 2/3) represents the scale of strength of the basic

weak shock where e << 1. A rescaling of the z-coordinate and time (t)

has also been considered: z" = _ and t" = ta..<e 1/3, such that each of

the terms in (11) is a function of (z',y, z,t'). The rescaling in z means

a stretching of the picture of the flow around the basic shock in order to

capture the basic nonlinear effects that occur in the flow across the shock.

The rescaling in time accounts for low-frequency unsteady perturbations in

the flow. The constant N reflects that the speed of the basic shock wave is a

little higher than the speed of sound, ahead of the shock. The substitution

of Eqs. (11) into the continuity, momentum and energy equations results

to the leading orders in:

_-z (p+u)=0

0

Op 0 , Or1 Owl

* + + N + o-T-==0

(12)

=0

(13)
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Ovt 10p

Ox" 7 0!]

Ow, 10p

&r" 70z

(14)

@p Op Op _r" Op2 Op_&. 7_-j + P_x. - :'p + O._.--:- _-x- = o (15)

Ox" - 0, Ox" - 0 (16)

From the equation of state and the definition of entropy it can be shown

that the temperature T_ and entropy S are given by:

T_ = r_(l + e2/3T + -.

where

S = S.._(1 + e2/3s + ...

T_ = p_/Rp_, S_=culn(-_-/p_/

(17a)

Cu

T = p-p, s= _--_Cp-:,p)

Equations (12) through (17) result in:

(17b)

u+p = f(y,-,t') (18a)

7u +p=g(y,z,t') (18b)

_ ._Ou Ov Or',
-Or-'-":+ (-K - f + g - (';, + 1)u)j_-:x " + _ +

Owl 10g

O: -_Or"
(18c)

79



Ou Ow_ i Og

cgu Ot, l I Og
= -_ (18e)

- _': = Oy cgx" "r Oy

P..

T = g - f - (_r - 1)u, .._= _-(g - "ff) (lSf)

where f and g are random induced fluctuations due to the free turbulence.

The function g is related to the vorticity fluctuations in the flow. Equations

(18) show that the axial perturbation (u), pressure perturbation (p) and

density perturbation (fl), that are of order of the shock strength (_2/3),

interact with the transverse velocity perturbations r_ and w_. that are of a

smaller scale (e).

The substitution of tt = g/j, + _ in (18c). (18d) and (18e) results in a

problem for solving a velocity potential function o(,r', y, :, t') where:

0o Oo 0o 06

(_ = Oz" _'1 = ah : 0: P = -3'_z" (19a)

2¢,.,. + ( K + g + f + ( 7 + l )o,.) ¢,.:, _ (o_ + ¢....) = log"I -_-Ot_ (19b)

In a conservative form Eq. (19b) is given by:

( 1)2¢_. + _g +((K+g/:_+f)o_.+(-/+1)o2;./2)),.-(v_)_-{¢,),=O
(,

(19c)

The exact shock jump conditions (Ref. 32) must be satisfied along any

shock surface z" - h(y, :, t') = 0 that may appear in the solution. To the

leading orders they result in:

[/] = O. [g]= 0 (20a)
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Oh r+_.1 oh oh
-2t+=.t_+_K+_+S)C_:.J+(,+I_[:_] +E+_iN+I+:i_ =0 c20u_

Oh[¢_1+ IcY'IN= 0 [¢,1+ [¢_.1 = 0. (20c)

where [a] represents the jump across the shock property a, [a] = aB - aA.

Equations (20a) show that to the leading order there is no jump in entropy

across the shock. [S] = 0. Equations ( 11 ) and (1S) also show that the local

Mach number .lie at any point in the flow is given by:

M'-l=e_/au ". u'={('/+I)o_.+,<+,+ 9-}., (21)

The flow is locally supersonic when ('r + 1)¢_,. + K + f + 1 > 0, sonic when
2<0.(_ + 1)¢_. + K + f + _ = 0. and subsonic when (-y + 1)_. + K + f +

Equations (19) and (20) are an extended version of the classic unsteady

small-disturbance equation for transonic aerodynamics (Cole and Cook3a).

The only changes are due to the random terms g and f. Starting from

given functions for f and g and initial conditions that describe a given

basic shock, Eqs. (19) and (20) can be integrated in space and time to

describe the development of the shock wave and pressure field behind it. A

numerical algorithm to solve these equations is described in Section 4.

An alternative approach may be found by taking a x'- derivative of (18c)

and using Eqs. (18a) and (14). The pressure perturbation (p) satisfies the

equation:

0 (Op K+f+g/'i 7+1 c)p) 1 (02p O_p_o_--:_ + 2 _ PS-_. = =,_\E_y_+ 8_,._1 (22)

Equation (22) is an extended version of the classic KKZ equation that

describes the propagation of nonlinear sound beams with narrow angular

spectrum in an inviscid fluid (Zabolotskava et al. a°. Kuznetsoval). Eq.

(22) also has a similar form to the model equation that has been recently

developed by Pierce 17 using logical considerations only.

81



Equations (19) and (22) show that diffraction effects, nonlinear steep-

ening, focusing and caustic effects and random induced fluctuations due

to turbulence interact simultaneously to determine the development of the

shock wave in space and time and the pressure field behind it. Turbulence

tends to change the local speed of sound in the flow across the shock and

through this effect to reduce or to magnify the strength of the jump along

the basic shock (see Eq. (21)) or to distort the shock front. These changes

may result in unsteady motion of the shock front or in caustic vertices or

in reflected shocks behind the incident wave that can produce the variety

of pressure signatures of sonic booms that are measured in experiments.

4 Finite Difference Scheme

A finite difference algorithm to solve the unsteady mixed-type elliptic-

hyperbolic flow around the shock wave has been developed. Murman and

Cole 34 and Cole and Cook 33 techniques are used. A fully conservative

scheme that is based on the conservative form (Eq. 19c) is used. In this

way the difference equations also contain the shock relations (Eqs. (20)).

Consider a uniform finite difference mesh (Az'. Ay, Az, At') in space

and time, with points (z', y, =, t') labeled by (i, j. k, n). The results can be

easily generalized to a variable mesh. Eq. (19c) can be expressed in a con-

servative flux form for a box centered on a mesh point (i, j, k). Therefore,

1 2¢_. + 2_. + _gAt----: _g - +
(,,j,k.,_) (,.j,k.n- l)

+ 1 K + _ + / _,. + (-_+ 1)_./2 (,+½,,._.-_

- +/ '_,. + (-y+ 1)e_./2
3' / (i- ½,j,/,,,_)

Ay ' ., , .
=0

(23)
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(¢y) and (¢:) are always calculated from a centeredexpression. However.
the approximation of (¢,) strongly dependson whether locally, at a point,
the flow is subsonic,supersonic, sonic or it is a shock point. Extending
References33, 34 methodologiesto our caseand using Eq. (21), a centered
approximation and a backwardexpressionaregiven for u':

.c 1
u{,._.k., 0 =K + f(j,k,n)+-g(j,k,n)

+
-, + 1

-(o(i + 1.j.k.n) - o(i - 1.j.k, n))
2 A .r"

.b 1
u(,,j,k,. ) =K + f(j.k.n)+-g(j.k,n)

Y

-r+l

+ 2Ax.(O(i,j,k,n)-¢(i-2,j,k,n)) (24)

The local type of the flow is determined by the following table: 3a'a4

condition

1

2

3

4

.¢

<0

>0

>0

<0

,b
U

<0

>0

<0

>0

local flow is

subsonic

supersonic

a sonic point

a shock point

Table 1

Eq. (23) is developed in a specific form according to the local type of the

flow. When the flow is locally subsonic, an elliptic difference form is used:
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G(i,j,k,n)
1

&x" & t " (O(i + 1,2, k. n) - o(i - 1.j,k,n - 1))

2

ZXt"
---¢,_.(i,j,k,n - 1) +

1

7 A t .(g(j'k'n) - g(j,k, n - 1))

1+ .r£ + f(j. k. n) + -g(j. t'. n)
./

+'t+l }2---_x. (e(i + 1,j, k. n) - o(i - 1,j, k, n))

o(i + 1,j, k, n) - 2o(i,j, k, n) + o(i - 1,j,k,n)

(Ay)2

(A.r")5

(o(i,j + 1.k, n) - 2o(i,j,k. n) + Ù(i.j - 1, k,n))

1

(Az)_(O(i'j'k + 1.n) - 2o(i.j, k,n) + ¢(i,j,k - 1,n)) = O.

(25)

When the flow is locally supersonic, a hyperbolic difference form is used:

a(i,j,k,n)
2

Ax" A t" (¢(i,j, k, n) - O(i - l.j, k. n)) -

9

Z_tgo_:.( i. j, k, n - 1) +

1

t.(g(i.j,k,n) - g(i,j,k,n - 1))A
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1+ K + f(j.k, n) + -g(j,k. n)

7+I }.2---_z.(o(i,j, k, n) - o(i - 2,j, k'.n))

o(i,j, k, n) - 20(i - 1,j, k, n) + _(i - 2, j, k, n)

( Ax" )_

(Ay)2
(¢(i.j + 1. k, n) - 2o(i.j,k, n) + ¢(i,j - 1. k,n))

1

(&z)-i(¢(i,j.k + 1.n) - 20(i,j,k,n) + ¢(i,j,k - 1,n)) = O.

(26)

When the flow is locally sonic. (? + 1 )o_. + K + .f + ¼g = O. Then the sonic

point difference form is:

a(i,j,k,n)
1

(Av)i(o(i,j + 1.k.,7) - 2o(i,j, k, n) + o(i,j - 1,k,n))

1
+ ,--W-yW_,,(e(i,j,k + 1,n) - 2o(i,j,k,n) + ¢(i,j,k - 1, n))

_L.az )-

(7+ 1)/kt o (g(j'k"2)-g(j'k'n-1))

-2(f(j.k. n) - f(j, k. n - t))) = O. (27)

When locally there is a shock point, a shock point difference operator is

used where the flux ahead of the shock may be approximated by a backward
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formula and the flux behind the shock by a centered formula.

G(i,j,k,n) =
AxO_t "

(o(i + l.).k.n)-O(i- l.j.k._))

ZXt"
---o_.(i.j.k,n- t)+--

1

t.(g( j,k, n) - g(j,k,n - 1))/x7

+{K + f(j. k,n) + Ig(j"r k,n)

7+1

"2& .r"
(o(i + l.j,k.n)- o(t.j.k.n) + o(i- 1.j,k.n)

+o(i 2. j,k.n))} .

o(i + 1,j, k. n) - o(i,j, l,,. n) - O(i - 1.j, k. n) + ¢(i - 2,j, k, n)

(&x'p

(&y)2
(o(i,j + 1. k.n) - 2o(i.j, k,n) + ¢(i,j - 1,k,n)) -

(&:)_
(o(i.j.k+ t.n)-2o(i.j.k.n)+O(i.j,k- 1,n))=O.

(28)

Starting from initial conditions that describe a given shock wave in the

space for t = 0 (or n = 0), and given the functions f(y,z,t) and g(y,z,t),

equations (25) through (28) can be applied for n = 1 at any mesh point

according to Table 1. They can be solved by an iterative point or line -

or plane - relaxation algorithm until at any point max ]G( i, j, k. 1)[ < 6

where 6 is a given small tolerance of convergence. Then e_.(i, j, k, 1) can

be calculated at any mesh point and the process is restarted for the next

time step. In this way the shock motion and pressure field behind it can

be integrated in space and time and the effect of various deterministic and
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random fluctuations f and g can be studied. Numerical calculations of

various examples are underwav and will be presented in a future report.

5 Conclusions

The review of the theoretical studies of the interaction of shock waves with

free stream vortical flows or turbulence shows that this complex nonlinear

interaction is still an open problem to analyze. The analysis of the lin-

earized problem of the interaction of a weak shock with relatively small

disturbances shows that it is an invalid approach when the perturbations

are of the order of shock strength. However, in a coordinate system mov-

ing with the basic weak shock, the problem may fit the transonic theory
framework.

A new transonic small-disturbance model has been developed where a

rescaling of the axial coordinate and time has been considered to capture the

basic nonlinear effects that occur in the flow across the shock. This model

results in two alternative approaches: (1) an equation for solving a velocity

potential function that is described by an extended version of the classic

small-disturbance equation for unsteady transonic aerodynamics; _ and (2)

a nonlinear equation to describe the pressure field that is similar to the

model equation recently presented by Pierce lr using logical considerations

only. This equation also has extended form of the classic equation that

describes the propagation of nonlinear sound beams with narrow angular

spectrum.3°'31

Both approaches show that diffraction effects, nonlinear steepening, fo-

cusing and caustic effects and random induced turbulence fluctuations in-

teract simultaneously to determine the development of the shock wave in

space and time and the pressure field behind it. Turbulence fluctuations

tend to change the local speed of sound in the flow across the shock and

through this effect to reduce or magnify the strength of the basic shock.

A finite difference scheme that uses *Iurman and Cole 34 finite-difference
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techniquesfor solving mixed-typeelliptic-hyperbolic flowswith shockwaves
hasalso beenpresented.Numerical calculationsof the interaction of shock
waveswith variousdeterministic and random fluctuations will be presented
in a future report. We will also look for analytical methods to identify the
basic relations betweengiven turbulence properties and the development
of the shock waves and the pressure field behind it, It is expected to
find solutions that will describeboth peakedor rounded or messypressure
signaturesas wererecorded in experiments. We also intend to extend the
model to include humidity and winds effectsthat arealso known to havea
significant effecton sonic boom pressurepeaksand rise times.
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